Stoke’s theorem :
Statement : The closed line integral of any vector function is equal to the surface integral of the “curl of vector function”, considering the surface is bounded by the closed curve.
stoke's theorem |
In short : Stoke's theorem enable us to convert a surface integral into a line integral.
Proof of Stoke's Theorem
B |
|
|
|
|
|
|
|
|
|
|
|
stoke's theorem figure 1 |
Consider an arbitrary surface(S) area bounded by a closed curve (L).
Assume the surface is made up of large no. of elementary surface area (small elements ∆si).
Here large no. means it should be countable.
Considering one such element ∆si
( ABCD ) shown in figure 1
Curl of any vector,
We have ∆si element (s),
so,
|
stoke's theorem fig.2 |
Quick Explanation (fig.2 ABCEFDA)
Let for ABCDA,
A.dl cos00 = A.dl
A.dl cos 1800 = -A.dl
Therefore,
curl along CD is
A.dl – A.dl = 0 ( the boundary CD
get cancelled out and similarly for the whole surface)
Therefore,
This is the stoke’s theorem.
Q. State and prove stoke’s theorem. ( LNMU,2019, paper 1, part 1 )
Note : This post is created by collecting facts from different sources. If any error is found in it, then LNMU Notes will have no responsibility. Of any human error, list (message) at lnmunotes@gmail.com
यह पोस्ट विभिन्न स्रोतों से तथ्यों को एकत्रित करके बनाया गया है। यदि इसमें कोई त्रुटि पाई जाती है, तो LNMU नोट्स की कोई जिम्मेदारी नहीं होगी। किसी भी मानवीय त्रुटि की, सूची (संदेश) lnmunotes@gmail.com पर लिखिए |
To download pdf go to download section or click here.
पीडीएफ डाउनलोड करने के लिए डाउनलोड सेक्शन में जाएं या यहां क्लिक करें
You can also download the pdf books according to your syllabus for free. You can comment the book name with author below in case you don't find it here. we will try our best to add your request.
आप मुफ्त में अपने सिलेबस के अनुसार पीडीएफ़ बुक्स भी डाउनलोड कर सकते हैं। यदि आप इसे यहाँ नहीं पाते हैं तो आप लेखक के साथ पुस्तक का नाम लिख सकते हैं। हम आपके अनुरोध को जोड़ने के लिए अपनी पूरी कोशिश करेंगे।
0 Comments
Please do not post any spam link here